Metamaterial Absorber Thesis Statements


S. Zhong and S. He, “Ultrathin and lightweight microwave absorbers made of mu-near-zero metamaterials,” Sci. Rep. 3(2083), 2083 (2013).
[PubMed]

H. Caglayan, S.-H. Hong, B. Edwards, C. R. Kagan, and N. Engheta, “Near-infrared metatronic nanocircuits by design,” Phys. Rev. Lett. 111(7), 073904 (2013).
[Crossref] [PubMed]

Y. R. Padooru, A. B. Yakovlev, C. S. R. Kaipa, G. W. Hanson, F. Medina, F. Mesa, and A. W. Glisson, “New absorbing boundary conditions and analytical model for multilayered mushroom-type metamaterials: applications to wideband absorbers,” IEEE Trans. Antenn. Propag. 60(12), 5727–5742 (2012).
[Crossref]

S. Feng and K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B 86(16), 165103 (2012).
[Crossref]

A. Vakil and N. Engheta, “One-atom-thick reflectors for surface plasmon polariton surface waves on graphene,” Opt. Commun. 285(16), 3428–3430 (2012).
[Crossref]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(517), 517 (2011).
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Y. Jin, S. Xiao, N. A. Mortensen, and S. He, “Arbitrarily thin metamaterial structure for perfect absorption and giant magnification,” Opt. Express 19(12), 11114–11119 (2011).
[Crossref] [PubMed]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1(6), 1090–1099 (2011).
[Crossref]

K. Halterman, S. Feng, and V. C. Nguyen, “Controlled leaky wave radiation from anisotropic epsilon near zero metamaterials,” Phys. Rev. B 84(7), 075162 (2011).
[Crossref]

B. Zhu, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Dual band switchable metamaterial electromagnetic absorber,” PIER B 24, 121–129 (2010).
[Crossref]

Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. 27(3), 498–504 (2010).
[Crossref]

S. Gu, J. P. Barrett, T. H. Hand, B.-I. Popa, and S. A. Cummer, “A broadband low-reflection metamaterial absorber,” J. Appl. Phys. 108(6), 064913 (2010).
[Crossref]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

M. H. Li, H. L. Yang, X. W. Hou, Y. Tian, and D. Y. Hou, “Perfect metamaterial absorber with dual bands,” PIER 108, 37–49 (2010).
[Crossref]

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43(22), 225102 (2010).
[Crossref]

A. Namai, S. Sakurai, M. Nakajima, T. Suemoto, K. Matsumoto, M. Goto, S. Sasaki, and S. Ohkoshi, “Synthesis of an electromagnetic wave absorber for high-speed wireless communication,” J. Am. Chem. Soc. 131(3), 1170–1173 (2009).
[Crossref] [PubMed]

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on negative index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

E. Popov, D. Maystre, R. C. McPhedran, M. Nevière, M. C. Hutley, and G. H. Derrick, “Total absorption of unpolarized light by crossed gratings,” Opt. Express 16(9), 6146–6155 (2008).
[Crossref] [PubMed]

C. M. Bingham, H. Tao, X. Liu, R. D. Averitt, X. Zhang, and W. J. Padilla, “Planar wallpaper group metamaterials for novel terahertz applications,” Opt. Express 16(23), 18565–18575 (2008).
[Crossref] [PubMed]

S. Tretyakov, “On geometrical scaling of split-ring and double-bar resonators at optical frequencies, Metamaterials,” Metamaterials (Amst.) 1(1), 40–43 (2007).
[Crossref]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

M. G. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials,” Phys. Rev. B 76(24), 245109 (2007).
[Crossref]

A. Alù, F. Bilotti, N. Engheta, and L. Vegni, “Sub-wavelength planar leaky-wave components with metamaterial bilayers,” IEEE Trans. Antenn. Propag. 55(3), 882–891 (2007).
[Crossref]

B. Munk, P. Munk, and J. Pryor, “On designing Jaumann and Circuit Analog absorbers (CA absorbers) for oblique angle of incidence,” IEEE Trans. Antenn. Propag. 55(1), 186–193 (2007).
[Crossref]

M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, and S. C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006).
[Crossref]

W. H. Emerson, “Electromagnetic wave absorbers and anechoic chambers through the years,” IEEE Trans. Antenn. Propag. 21(4), 484–490 (1973).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

W. G. Spitzer, D. Kleinman, and D. Walsh, “Infrared properties of hexagonal silicon carbide,” Phys. Rev. 113(1), 127–132 (1959).
[Crossref]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

A. Alù, F. Bilotti, N. Engheta, and L. Vegni, “Sub-wavelength planar leaky-wave components with metamaterial bilayers,” IEEE Trans. Antenn. Propag. 55(3), 882–891 (2007).
[Crossref]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(517), 517 (2011).
[Crossref] [PubMed]

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43(22), 225102 (2010).
[Crossref]

C. M. Bingham, H. Tao, X. Liu, R. D. Averitt, X. Zhang, and W. J. Padilla, “Planar wallpaper group metamaterials for novel terahertz applications,” Opt. Express 16(23), 18565–18575 (2008).
[Crossref] [PubMed]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on negative index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
[Crossref]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(517), 517 (2011).
[Crossref] [PubMed]

S. Gu, J. P. Barrett, T. H. Hand, B.-I. Popa, and S. A. Cummer, “A broadband low-reflection metamaterial absorber,” J. Appl. Phys. 108(6), 064913 (2010).
[Crossref]

A. Alù, F. Bilotti, N. Engheta, and L. Vegni, “Sub-wavelength planar leaky-wave components with metamaterial bilayers,” IEEE Trans. Antenn. Propag. 55(3), 882–891 (2007).
[Crossref]

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43(22), 225102 (2010).
[Crossref]

C. M. Bingham, H. Tao, X. Liu, R. D. Averitt, X. Zhang, and W. J. Padilla, “Planar wallpaper group metamaterials for novel terahertz applications,” Opt. Express 16(23), 18565–18575 (2008).
[Crossref] [PubMed]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(517), 517 (2011).
[Crossref] [PubMed]

H. Caglayan, S.-H. Hong, B. Edwards, C. R. Kagan, and N. Engheta, “Near-infrared metatronic nanocircuits by design,” Phys. Rev. Lett. 111(7), 073904 (2013).
[Crossref] [PubMed]

M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, and S. C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, and S. C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006).
[Crossref]

S. Gu, J. P. Barrett, T. H. Hand, B.-I. Popa, and S. A. Cummer, “A broadband low-reflection metamaterial absorber,” J. Appl. Phys. 108(6), 064913 (2010).
[Crossref]

H. Caglayan, S.-H. Hong, B. Edwards, C. R. Kagan, and N. Engheta, “Near-infrared metatronic nanocircuits by design,” Phys. Rev. Lett. 111(7), 073904 (2013).
[Crossref] [PubMed]

W. H. Emerson, “Electromagnetic wave absorbers and anechoic chambers through the years,” IEEE Trans. Antenn. Propag. 21(4), 484–490 (1973).
[Crossref]

H. Caglayan, S.-H. Hong, B. Edwards, C. R. Kagan, and N. Engheta, “Near-infrared metatronic nanocircuits by design,” Phys. Rev. Lett. 111(7), 073904 (2013).

Abstract

Plasmonic metamaterials are artificial materials typically composed of noble metals in which the features of photonics and electronics are linked by coupling photons to conduction electrons of metal (known as surface plasmon). These rationally designed structures have spurred interest noticeably since they demonstrate some fascinating properties which are unattainable with naturally occurring materials. Complete absorption of light is one of the recent exotic properties of plasmonic metamaterials which has broadened its application area considerably. This is realized by designing a medium whose impedance matches that of free space while being opaque. If such a medium is filled with some lossy medium, the resulting structure can absorb light totally in a sharp or broad frequency range. Although several types of metamaterials perfect absorber have been demonstrated so far, in the current paper we overview (and focus on) perfect absorbers based on nanocomposites where the total thickness is a few tens of nanometer and the absorption band is broad, tunable and insensitive to the angle of incidence. The nanocomposites consist of metal nanoparticles embedded in a dielectric matrix with a high filling factor close to the percolation threshold. The filling factor can be tailored by the vapor phase co-deposition of the metallic and dielectric components. In addition, novel wet chemical approaches are discussed which are bio-inspired or involve synthesis within levitating Leidenfrost drops, for instance. Moreover, theoretical considerations, optical properties, and potential application of perfect absorbers will be presented. View Full-Text

Keywords: perfect absorber; metamaterials; plasmonic; nanocompositeperfect absorber; metamaterials; plasmonic; nanocomposite

►▼ Figures

0 Thoughts to “Metamaterial Absorber Thesis Statements

Leave a comment

L'indirizzo email non verrà pubblicato. I campi obbligatori sono contrassegnati *